17 research outputs found

    A Statistical Model for Simultaneous Template Estimation, Bias Correction, and Registration of 3D Brain Images

    Full text link
    Template estimation plays a crucial role in computational anatomy since it provides reference frames for performing statistical analysis of the underlying anatomical population variability. While building models for template estimation, variability in sites and image acquisition protocols need to be accounted for. To account for such variability, we propose a generative template estimation model that makes simultaneous inference of both bias fields in individual images, deformations for image registration, and variance hyperparameters. In contrast, existing maximum a posterori based methods need to rely on either bias-invariant similarity measures or robust image normalization. Results on synthetic and real brain MRI images demonstrate the capability of the model to capture heterogeneity in intensities and provide a reliable template estimation from registration

    Utility of plasma neurofilament light and total tau for clinical trials in Alzheimer's disease

    Get PDF
    INTRODUCTION: Several blood‐based biomarkers are associated with neuronal injury, but their utility in interventional clinical trials is unclear. This study retrospectively evaluated the utility of plasma neurofilament light (NfL) and total tau (t‐tau) in an 18‐month trial in mild Alzheimer's disease (AD). METHODS: Correlation and conditional independence analyses and Gaussian graphical models were used to investigate cross‐sectional and longitudinal relations between NfL, t‐tau, and clinical scales. RESULTS: NfL had a stronger association than t‐tau with clinical scales; t‐tau did not hold additional information to that given by NfL (P > 0.05 at all time points). NfL held independent information about shorter‐term (3‐ to 6‐month) progression beyond patient age and clinical scores. However, no meaningful gain in power was found when adjusting a longitudinal analysis of cognitive scores for baseline NfL. DISCUSSION: Plasma NfL is superior to t‐tau in mild AD. The ability of NfL to detect changes before clinical manifestations makes it a promising biomarker of drug response in trials of disease‐modifying drugs

    Insights into globalization: comparison of patient characteristics and disease progression among geographic regions in a multinational Alzheimer’s disease clinical program

    Get PDF
    Background: Globalization of clinical trials has important consequences for trial planning and interpretation. This study investigated heterogeneity in patient characteristics and outcomes among world regions in the global idalopirdine Phase 3 clinical program. Methods: Data were pooled from three 24-week randomized controlled trials in patients aged ≥ 50 years with mild-to-moderate Alzheimer’s disease (AD) (n = 2506). Patients received idalopirdine (10, 30, or 60 mg/day) or placebo, added to cholinesterase inhibitor treatment. Patients were categorized into the following regions: Eastern Europe/Turkey (n = 759), Western Europe/Israel (n = 709), USA/Canada (n = 444), South America/Mexico (n = 361), Asia (n = 134), and Australia/South Africa (n = 99). For each region, operational characteristics, baseline demographic and clinical characteristics, adverse events, and mean change from baseline to week 24 in clinical rating scale scores (placebo group only) were summarized using descriptive statistics. Results: Completion rates were 0.86–0.90 in all regions. Heterogeneity among global regions was evident. Protocol deviations were twice as common in South America/Mexico as in USA/Canada (2.64 vs 1.35 per patient screened). Educational level ranged from 9.2 years in South America/Mexico to 13.4 years in USA/Canada. APOE ε4 carriage was 80.6% in Australia/South Africa, 63.1% in Western Europe/Israel, and < 60% in other regions. Screening Mini-Mental State Examination scores were higher in Eastern Europe/Turkey (18.0) and USA/Canada (17.5) than in other regions (16.9–17.1). Baseline AD Assessment Scale-Cognitive subscale (ADAS-Cog) scores ranged from 24.3 in USA/Canada to 27.2 in South America/Mexico. Baseline AD Cooperative Study - Activities of Daily Living, 23-item version (ADCS-ADL23) scores ranged from 58.5 in USA/Canada to 53.5 in Eastern Europe/Turkey. In the placebo group, adverse events were 1.6–1.7 times more common in Western Europe/Israel, USA/Canada, and Australia/South Africa than in Eastern Europe/Turkey. On the ADAS-Cog, Australia/South Africa and Western Europe/Israel showed the most worsening among patients receiving placebo (1.56 and 1.40 points, respectively), whereas South America/Mexico showed an improvement (−0.71 points). All regions worsened on the ADCS-ADL23, from −3.21 points in Western Europe/Israel to −0.59 points in Eastern Europe/Turkey. Conclusions: Regional heterogeneity - in terms of study conduct, patient characteristics, and outcomes-exists, and should be accounted for, when planning and conducting multinational AD clinical trials. Trial registration ClinicalTrials.gov, NCT01955161. Registered on 27 September 2013. ClinicalTrials.gov, NCT02006641. Registered on 5 December 2013. ClinicalTrials.gov, NCT02006654. Registered on 5 December 2013

    Proprioceptive loss and the perception, control and learning of arm movements in humans: evidence from sensory neuronopathy

    Get PDF
    © 2018 The Author(s) It is uncertain how vision and proprioception contribute to adaptation of voluntary arm movements. In normal participants, adaptation to imposed forces is possible with or without vision, suggesting that proprioception is sufficient; in participants with proprioceptive loss (PL), adaptation is possible with visual feedback, suggesting that proprioception is unnecessary. In experiment 1 adaptation to, and retention of, perturbing forces were evaluated in three chronically deafferented participants. They made rapid reaching movements to move a cursor toward a visual target, and a planar robot arm applied orthogonal velocity-dependent forces. Trial-by-trial error correction was observed in all participants. Such adaptation has been characterized with a dual-rate model: a fast process that learns quickly, but retains poorly and a slow process that learns slowly and retains well. Experiment 2 showed that the PL participants had large individual differences in learning and retention rates compared to normal controls. Experiment 3 tested participants’ perception of applied forces. With visual feedback, the PL participants could report the perturbation’s direction as well as controls; without visual feedback, thresholds were elevated. Experiment 4 showed, in healthy participants, that force direction could be estimated from head motion, at levels close to the no-vision threshold for the PL participants. Our results show that proprioceptive loss influences perception, motor control and adaptation but that proprioception from the moving limb is not essential for adaptation to, or detection of, force fields. The differences in learning and retention seen between the three deafferented participants suggest that they achieve these tasks in idiosyncratic ways after proprioceptive loss, possibly integrating visual and vestibular information with individual cognitive strategies

    The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up

    Get PDF
    We present the findings of "The Alzheimer's Disease Prediction Of Longitudinal Evolution" (TADPOLE) Challenge, which compared the performance of 92 algorithms from 33 international teams at predicting the future trajectory of 219 individuals at risk of Alzheimer's disease. Challenge participants were required to make a prediction, for each month of a 5-year future time period, of three key outcomes: clinical diagnosis, Alzheimer's Disease Assessment Scale Cognitive Subdomain (ADAS-Cog13), and total volume of the ventricles. No single submission was best at predicting all three outcomes. For clinical diagnosis and ventricle volume prediction, the best algorithms strongly outperform simple baselines in predictive ability. However, for ADAS-Cog13 no single submitted prediction method was significantly better than random guessing. Two ensemble methods based on taking the mean and median over all predictions, obtained top scores on almost all tasks. Better than average performance at diagnosis prediction was generally associated with the additional inclusion of features from cerebrospinal fluid (CSF) samples and diffusion tensor imaging (DTI). On the other hand, better performance at ventricle volume prediction was associated with inclusion of summary statistics, such as patient-specific biomarker trends. The submission system remains open via the website https://tadpole.grand-challenge.org, while code for submissions is being collated by TADPOLE SHARE: https://tadpole-share.github.io/. Our work suggests that current prediction algorithms are accurate for biomarkers related to clinical diagnosis and ventricle volume, opening up the possibility of cohort refinement in clinical trials for Alzheimer's disease

    Simultaneous modeling of Alzheimer's disease progression via multiple cognitive scales

    No full text
    Analyzing the progression of Alzheimer's disease (AD) is challenging due to lacking sensitivity in currently available measures. AD stages are typically defined based on cognitive cut-offs, but this results in heterogeneous patient groups. More accurate modeling of the continuous progression of the disease would enable more accurate patient prognosis. To address these issues, we propose a new multivariate continuous-time disease progression (MCDP) model. The model is formulated as a nonlinear mixed-effects model that aligns patients based on their predicted disease progression along a continuous latent disease timeline. The model is evaluated using long-term follow-up data from 2152 participants in the Alzheimer's Disease Neuroimaging Initiative. The MCDP model was used to simultaneously model three cognitive scales; the Alzheimer's Disease Assessment Scale-cognitive subscale, the Mini-Mental State Examination, and the Clinical Dementia Rating scale—sum of boxes. Compared with univariate modeling and previously proposed multivariate disease progression models, the MCDP model showed superior ability to predict future patient trajectories. Finally, based on the multivariate disease timeline estimated using the MCDP model, the sensitivity of the individual items of the cognitive scales along the different stages of disease was analyzed. The analysis showed that delayed memory recall items had the highest sensitivity in the early stages of disease, whereas language and attention items were sensitive later in disease

    Electromagnetic navigation for intracranial neuroendoscopic operations

    No full text

    Simultaneous modeling of Alzheimer's disease progression via multiple cognitive scales

    No full text
    Analyzing the progression of Alzheimer's disease (AD) is challenging due to lacking sensitivity in currently available measures. AD stages are typically defined based on cognitive cut-offs, but this results in heterogeneous patient groups. More accurate modeling of the continuous progression of the disease would enable more accurate patient prognosis. To address these issues, we propose a new multivariate continuous-time disease progression (MCDP) model. The model is formulated as a nonlinear mixed-effects model that aligns patients based on their predicted disease progression along a continuous latent disease timeline. The model is evaluated using long-term follow-up data from 2152 participants in the Alzheimer's Disease Neuroimaging Initiative. The MCDP model was used to simultaneously model three cognitive scales; the Alzheimer's Disease Assessment Scale-cognitive subscale, the Mini-Mental State Examination, and the Clinical Dementia Rating scale—sum of boxes. Compared with univariate modeling and previously proposed multivariate disease progression models, the MCDP model showed superior ability to predict future patient trajectories. Finally, based on the multivariate disease timeline estimated using the MCDP model, the sensitivity of the individual items of the cognitive scales along the different stages of disease was analyzed. The analysis showed that delayed memory recall items had the highest sensitivity in the early stages of disease, whereas language and attention items were sensitive later in disease

    Dynamic ElecTronic hEalth reCord deTection (DETECT) of individuals at risk of a first episode of psychosis: a case-control development and validation study

    No full text
    Background: Many individuals who will experience a first episode of psychosis (FEP) are not detected before occurrence, limiting the effect of preventive interventions. The combination of machine-learning methods and electronic health records (EHRs) could help address this gap. Methods: This case-control development and validation study is based on EHR data from IBM Explorys. The IBM Explorys Platform holds standardised, longitudinal, de-identified, patient-level EHR data pooled from different health-care systems with distinct EHRs. The present EHR-based studies were retrospective, matched (1:1), case-control studies compliant with RECORD, STROBE, and TRIPOD statements. The study included individuals in the IBM Explorys database who at some point between 1990 and 2018 had a diagnosis of FEP followed by schizophrenia, and psychosis-free matched control individuals from a random subsample of the full cohort. For every individual in the FEP cohort, the individual in the control cohort was matched to have a similar date for inclusion in the database and a similar total observation time. Individuals in the FEP cohort had their index date defined as the first diagnosis of psychosis or the first prescription of antipsychotic medication. Individuals in the control cohort had their index date defined to occur the same number of days after inclusion in the database as their matching FEP individual. The FEP and control cohorts were both randomly split into development and validation datasets in a ratio of 7:3. The subset of individuals in the validation dataset who had all their health-care encounters at providers that were not seen in the development dataset made up the external validation subset. A novel recurrent neural network model was developed to predict the risk of FEP 1 year before the index date by employing demographics and medical events (in the categories diagnoses, prescriptions, procedures, encounters and admissions, observations, and laboratory test results) dynamically collected in the EHR as part of clinical routine. We named the recurrent neural network Dynamic ElecTronic hEalth reCord deTection (DETECT). The main outcomes were accuracy and area under receiver operating characteristic curve (AUROC). Decision-curve analyses and dynamic patient journey plots were used to evaluate clinical usefulness. Findings: The FEP and control cohorts each comprised 72 860 individuals. 102 030 individuals (51 015 matching pairs) were randomly allocated to the development dataset and the remaining 43 690 to the validation dataset. In the validation dataset, 4770 individuals had all their encounters outside of the 118 790 health-care providers that were encountered in the development dataset. The data from these individuals made up the external validation subset. The median follow-up (observation time before index date) was 6·0 years (IQR 3·0–10·4). In the development dataset, DETECT's prognostic accuracy was 0·787 and AUROC was 0·868. In the validation dataset, DETECT's prognostic accuracy was 0·774 and AUROC was 0·856. In the external test subset, DETECT's balanced prognostic accuracy was 0·724 and AUROC was 0·799. Prevalence-adjusted decision-curve analyses suggested that DETECT was associated with a positive net benefit in two different scenarios for FEP detection. Interpretation: DETECT showed adequate prognostic accuracy to detect individuals at risk of developing a FEP in primary and secondary care. Replication and refinement in a population-based setting are needed to consolidate these findings. Funding: Lundbeck
    corecore